Orbit Design For Phase I And Ii Of The Magnetospheric Multiscale Mission
by Nasa Technical Reports Server (ntrs) 2021-01-25 15:57:48
image1
The Magnetospheric Multiscale Mission (MMS) is a NASA mission intended to make fundamental advancements in our understanding of the Earth s magnetosphere. There are three processes that MMS is intended to study including magnetic reconnection, charge... Read more
The Magnetospheric Multiscale Mission (MMS) is a NASA mission intended to make fundamental advancements in our understanding of the Earth s magnetosphere. There are three processes that MMS is intended to study including magnetic reconnection, charged particle acceleration, and turbulence. There are four phases of the MMS mission and each phase is designed to study a particular region of the Earth's magnetosphere. The mission is composed of a formation of four spacecraft that are nominally in a regular tetrahedron formation. In this work, we present optimal orbit designs for Phase I and II. This entails designing reference orbits such that the spacecraft dwell-time in the region of interest is a maximum. This is non-trivial because the Earth's magnetosphere is dynamic and its shape and position are not constant in inertial space. Optimal orbit design for MMS also entails designing the formation so that the relative motion of the four spacecraft yields the greatest science return. We develop performance metrics that are directly related to the science return, and use Sequential Quadratic Programming (SQP) to determine optimal relative motion solutions. While designing for optimal science return, we also consider practical constraints such as maximum eclipse time and minimum inter-spacecraft separation distances. Data are presented that illustrates how long we can ensure that the formation remains in the relevant region of the Earth's magnetosphere. We also draw general conclusions about where in the orbit acceptable tetrahedron configurations can be provided and for how long. Less
Compare Prices
Available Discount
No Discount available
Related Books